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ABSTRACT,j
A class of representations for the least squares estimator is presented

and their applications sketched. Partly motivated by one such representation,

we propose;a class of weighted jackknife estimators of variance of the least

squares estimator by deleting any fixed number of observations at a time.

These estimators are unbiased for homoscedastic errors and a special case, the

delete-one jackknife variance estimator, is almost unbiased for hetero-

scedastic errors. The method is extended in various ways, including the use

of the jackknife histogram, for variance and interval estimation with

nonlinear parameters. Three bootstrap methods are considered. It is shown

that none of them has the robustness property enjoyed by the (weighted)

delete-one jackknife. Subset sampling with variable subset size is also

considered. Several bias-reducing estimators are proposed. They are

motivated by the observation that bias-reduction is mathematically equivalent

to unbiased estimation of variance. Some simulation results on estimating the

ratio of two normal parameters are reported.

AMS (MOS) Subject Classifications: 62J05, 62J02, 62G15

Key words: jackknife percentile method, subset sampling, variance estimator,

bias reduction, Fieller's method, representation of the least

squares estimator, robust regression.
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SIGNIFICANCE AND EXPLANATION

The Quenouille-Tukey jackknife is an old tool for bias reduction and non-

parametric variance estimation. Recently Efron introduced the bootstrap

method as a more versatile tool. It seems to have the potential to be useful

in many kinds of problems involving estimation of error. These tools are not

quite well developed for regression models. We propose a class of weighted

jackknife methods that recompute the least squares estimates by deleting any

fixed number of observations at a time. The key step is to weight each subset

least squares estimate with the determinant of the Fisher information matrix

of the subset. Some desirable properties of the procedures are proved. For

nonlinear parameters, the methods are useful for bias reduction and variance

estimation. Since we do not restrict to the classical delete-one jackknife,

confidence intervals can be constructed from the histogram of some proper

'. estimates from the resamples. The utility of the classical jackknife method

is broadened with this new tool. On the other hand we show that the existing

bootstrap methods may not work so well in the regression situation. Some

simulation results are presented and further questions for research are
raise.Accession For
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JACKKNIFE AND BOOTSTRAP INFERENCE IN REGRESSION AND A

CLASS OF REPRESENTATIONS FOR THE LSE

C. F. Jeff Wu

1. Introduction

In the first part of this paper we show that the full-data least squares estimate 8

(LS) can be represented as a weighted average of the LSE's B from all subsets a of a

fixed size with the weight proportional to the determinant of the XTX matrix associated

with the subset (Theorem 2), i.e.,

(1.1) sum of w . over all subsets of a fixed size, w5 a. X:XlaI aIwa
Instead of averaging over all subsets of a fixed size, we may consider drawing samples from

the full data according to a resampling scheme, and computing the LSE and the determinant

of the corresponding xTx matrix from each such sample. One main result (Theorem 1)

states that the above representation still holds for any resampling method that is

symmetric and nondegenerate with positive probability (Assumption B of Section 3),

including the jackknife and the bootstrap. Several implications of the representation

result are sketched in Section 3. A major one is in suggesting a new class of robust

regression estimators. The details are in Section 4.

The representation (1.1) involves a linear function of Bs" To estimate the variance-

covariance matrix (henceforth abbreviated as variance) of , it seems natural to look at

a quadratic function of R • A quadratic extension of (1.1) is

a a a
( 1.2) w e(B. - B)CB - B) , ws in (1.1)

where the summation is over all subsets of size r. It turns out that the choice =

(r-k+1)/(n-r), n - # of observations, k - # of regression parameters, makes (1.2) an

unbiased estimator of the variance of B if the errors are uncorrelated with mean zero and

constant variance (Theorem 3). This estimator is denoted as vj,r in (5.1).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. Also, supported
by the Alfred P. Sloan Foundation for Basic Research.
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The second and major part of this paper deals with the jackknife and bootstrap

resampling methods for variance and interval estimation and bias reduction. The method

(1.2) can be viewed as a weighted jackknife by deleting every subset of size n-r from the

full-data. The purpose of the adjustment factor C = (r-k+l)/(n-r) in (1.2) is to make

the distance of {(s - B) match the distance of B-B. For example, if r = n-1

(delete-one-at-a-time), B is too close to B. It is necessary to multiply the weighted5

sum of squares in (1.2) by a large factor C - n-k. Further attention is paid to the two

extreme choices of the subset size. r. If r = k - # of regression parameters, it turns

out that vjk is identical to the usual variance estimator (by assuming equal

variances). Theorem 4 provides the details, including the necessary modification of the

definition (1.2) when some subsets are associated with singular X matrices. The other

extreme is the delete-one jackknife, r - n-1. Our proposal is closely related to a

delete-one jackknife proposed by Hinkley (1977). The main difference is that Hinkley's

estimator uses weights proportional to the square of IXTXsI and is therefore a biased

estimator of the variance of B. Both delete-one jackknife variance estimators are robust

against error variance heterogeneity in that their biases converge to zero as n + - under

(the same) weak regularity conditions. Hinkley's estimator does not fare well in the

empirical study reported in Section 10.

In practice the resampling methods of inference are only used in situations where no

closed form of the variance (or other measures of variability) of the point estimator is

available. In Section 7 we consider extensions of the above method to parameters

8 - g(R) which are nonlinear functions of the regression parameters B. An obvious exten-

sion is to replace a in (1.2) by their counterparts g(B), g(i a The scale factor

& is applied after the nonlinear transformation g, (7.1). Another approach is to

incorporate this scale adjustment internally before applying the transformation g,

(7.2). To obtain confidence intervals for 6 without computing variance estimates, we

propose a jackknife percentile method through the construction of a weighted empirical

distribution function of some estimates of e based on the same subsets with the same

weight w5 in (1.1). Here we find it more natural to estimate 0 with the internal

-2-
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adjustment method. The jackknife percentile method is similar in spirit to 2fron's (1982)

bootstrap percentile method. There is some theoretical advantage in using the percentile

method since the possible skewness in the original point estimate ; will be reflected in

the histogram of the resampled estimates. Extensions to nonlinear regression models are

briefly outlined. The jackknife methodology has long been associated with the delete-one

jackknife. It has mainly been used for variance estimation and bias reduction. The method

proposed here overcomes these limitations by allowing the deletion of more than one

observation and the construction of the jackknife histogram. Further discussion is given

in Section 7.

Other resampling methods are studied in Section 8. The subset sampling method is an

extension of the jackknife by allowing different subset sizes. The variance estimator

(1-2) is extended to this situation. Three bootstrap methods of variance estimation are

considered. Two of them do not in general give unbiased variance estimators in the equal

variance case, as is shown by a counterexample. The third one by bootstrapping the

residuals is known to be identical to the usual variance estimator (8.19) in the case of

linear parameters. The latter estimator is unbiased in the equal variance case but is

biased for unequal variances.

The issue of bias reduction is studied in Section 9. It is shown that bias reduction

is achievable if and only if the variance of ; can be estimated unbiasedly (apart from a

lower order term). Based on this connection, several estimators of the bias of e are

proposed as natural counterparts of the variance estimators considered before. Conditions

under which these estimators achieve bias reduction are given in Theorems 7, 8 and

Corollaries 3, 4.

Several jackknife and bootstrap methods are compared in a simulation study, assuming a

quadratic regression model. Criteria for the simulation comparison include the bias of

estimating the variance-covarianoe matrix of ;, the bias of estimating the nonlinear

parameter 8 = -B1/(2$ 2), the coverage probability and length of the interval estimators

of 0. For the last two criteria, Fieller's method and the t-interval with the

linearization variance estimator are included for comparison. The simulation results are

esumarised at the end of Section 10. Further questions are raised in Section 11.
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2.* Some matrix Ie~a

For a matrix X of order n x k, let X8be its r x k submatrix consisting of

the ih'...,t rows, ),= and X be the n x (k-1) submatrix obtained

from deleting the j th column of X. For a square matrix A of order k, its adjoint is

defined as the k x kc matrix

(2.1) adj A - Ecij], 1 4 i, j -C kc

with its (i,j) element c ii - (-I) i+iM j an is the determinant of the

(-x ( k-)i)arx fAwt h jt row and ith column deleted. Let JAl, A-,

ATbe respectively the determinant, inverse and transpose of A. Recall A-' adj A/JAI,

if A- exists.

Lemma 1. Lt X and Z be n x k matrices, n )- k. Then

Mi lXTZ; - I Ix6f 1z.1
seSkc

(ii) lXTZl _k - I I xz I for any r )k

r

where

(2.2) Sr - all subsets a of size r

(Note that X.and 2.are square matrices for s e SOc)

Proof: Lemma 1iM is in Noble (1969, p. 226). Lemma 1(ui) is obtained by applying Lenna

iM to each term IX 3  anTo xz

0

Lea2. Let X be an n xk matrix, n )ok. Then

(2.3) adj XX .(-~l)- I adjIX r ok
Be Sr

if V.* are nonsingular for all a e SrF

(2.4) IXTXIlXTXri _ (n:Ic+l)-1 i JXTX l(XTX r
r

Proof: From definition, the (i,j) elements of adj X1X and adj X TX5  are

(-I) i+lIX(i)'Px(i)I and (-I) i+jlxji)TXji)1 respectively, where xji) is obtained from

-4-
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deleting the ith column of X. Therefore (2.3) is equivalent to

ser

which follows from l~asu 1(ui), noting that X (i)T x(i) and X(i)TX(L) are both of order

k-1. (2.4) follow from (2.3) since adj A - IAIA.

Usese 3. Let Z be art r x kc matrix, r )0 k. If -ZZ 0, then IZTWI 0 for any

r x kc matrix W.

Proofs Since IZTZJ - 0, Z is not of full rank, which implies ZTW is singular and

IZrTrt - 0.

3. Representations of the least squares estimator

To motivate the general representation result, let us first consider the simple linear

regression model

(3.1) Yi- a + Ox + ej, 1 1,..

with Doi - 0, ft 2 .- and cov(ei~ej) - 0 for i d .The ordinary least squares

estimator (LS!P) 0 of 0 has several equivalent expressions,

0 - y y)(xi ) (xi

(3.2) - y y (Y -Y)(x~ - x)/ (x - x2

i~j i<

(3.3) - i 1. u

where

(3.4)i
ij x -x

1. j

are the pairwise slopes for xi 0 xj and

(x -

u -

ij ( x

To validate the step from (3.2) to (3.3), u~ Bj0i in (3.3) is defined to he zero for

X- X,. One can now interpret B as a weighted average of all the least squares

estimates iB based on the (i,j) pairs of observations, with the weight proportional

-- 7-



to (xi -
2 , 

which happens to be the determinant of X where

xixij " I xi]

is the design matrix corresponding to the (ij) observations. It seems natural to guess

the following extension for the general linear model: the LS based on the full data set

is equal to a weighted average of the LSE's based on all subsets of fixed size with the

weight proportional to the determinant of the xTx matrix corresponding to the subset. In

fact a more general result will be shown to be true.

Throughout the paper we assume the following general linear model:

Yi - x + e i  1,...,n

where xi is a k x 1 deterministic vector, 8 is the k x 1 vector of parameters and

2 Ta, are uncorrelated errors with mean zero and variance o. Writing y - (Yl ... lyn)

e = (e1 ,...,en)T and X = [x1,.. .Xn] T (3.4) can be rewritten as

2 2
(3.5) y - X0 + e , Var(e) - - ag I(o a.. .0)

We always assume xTx is nonsingular. The ordinary least squares estimator (LS) based on

the full data (y,X) is

(3.6) (xTx-X

In Theorem 1 6 is related to the LSE's based on values "resampled" from the full data

(y,X). A brief discussion of resampling procedures is given next.

The full data, z 1  (Yl#Xl)e... Zn - (Yn#Xn) are thought of as being observed and

fixed. A resample of (zi)n is a reweighted version of (zi)n with weight P ) 0. The

vector P* - (P! .... Pn) is called a resampling vector. For each P , the corresponding

least squares estimate B is based on Pi "copies" of Zi, i.e.,

(3.7) B - -XTD*X)1 XTDy, D8 - diag(P ...,P )

is a weighted least squares estimate with weight proportional to P1. Let "*" denote the

joint distribution of (P*)n under a resampling procedure. The expectation under

repeated sampling according to the given resampling procedure is denoted by E,.

(



Assumptions on the resampling procedure C

(A) 3Z ( f! ±il - k 0, independent of the subset (i1l*** 'jk) of size kc, kc # of

parameters in (3.5).

It is easy to see that (A) is implied by (B).

(B) 1. The n random variable nP are exchangeable.
i I

2. Prob*(support size of P* ), k) > 0, where the support size of P* is the total

number of i's with P~ > 0.

It will be shown after Theorem 1 that several important resampling procedures satisfy the

assumption (9).

Our first major result states that the full-data LBE ; is a weighted average of the

resampled-data Lot's 0 with weight proportional to IxrD~xI for any resampling

procedure satisfying (A).

Theorem 1.* For any resampling method Csatisfying the assumption (A), the LSE ; base d

on the full data can be represented as

9, X T0 XB
(3.8) T *

whre J BCXJ i defined tobe zeoif XD*X is singular.

Proof: First consider the D* vith nonsingular XT .Since B* is the solution to the

equtio (TC*)O - XTD y, from Cramer's rule (noble, 1969, p.209), the j th eeeto

B* in equal to the ratio of the determinant of the matrix obtained by replacing the j th

column of X TD*X by the vector XTD*yover tedeterminant ofXD*X. Notationally,

Mi thwhere X (y) is the n x kc matrix obtained by replacing the j column of X by y.I This establishes

(3.9) IXTD*X(J)(yfl = ITDCXIB; for nonsingular X .*

-7-



For singular xT D x,

(31)Ix T DX(iJ)I - 0

follows from lamas 3. From (3.9) and (3.10), the j th element of the right hand aide of

(3.8) equals

(311 .IzTo*xJ() IC Y. Ix* (D5  ) tX (Y)I

E.tX7D*Xt R. I, Ix 81 2 I:

whre issutonovr i kf D,= diag(P* .. P ) in the diagonal submatrix
i** i)k

Of D corresponding to the subset a - (ill ... ik) and (3.11) follows from Leuma 1(i).
k

Since E.1D1* R P*, a, > 0 independent of a from the asaumption (A), (3.11)
i.1 j

equals

P IX8 I! )XI)

which is equal to the jth element of ;-Teproof in completed.

An important resampling procedure that satisfies (8) is the bootstrap (Efron, 1979).

A simple random sample ~i* z~ of fixed site a, is drawn with replacement from the

observed sample zli'* ' Let Pi *(Zi all~ j 1.,). Then 9* -P* ... P*

follows a multinomial distribution,

MR n~ -

with a independent draws on n categories each having probability 1/n. For m ;P k,

(3.12) satisfies (3) and the representation result of Theorem 1 applies to the bootstrap

method. Note that the bootstrap sample size a need not be the same as the original

somple size n.

Another example is the jackknife method, which computes the LS83 by deleting any subset

of aiso d or equivalently by retaining any subset of size r - n-d. The jackknife

resamplinq with fixed size r is defined by

(3.13) Prob,(P -1I for 1ils. -0 for ir)=n for all asaSr

lot B denote the L8Z based on the subset of observations zi,l % e



(3.14) Ts (X -iT

where ye (Yir ... Y ir)T. As a special case of Theorem 1, we have

Theorem 2. For any r 0 k,

seS a ae

( 3 .1 5 ) Ir -r

F Ix TX I (flk )IXTXI
seSr  

r-k

where IXTX 1^ is defined to be zero for singular xTXs.

The second identity of (3.15) follows from Lemma 1(ii). Theorem 2 is the extension

anticipated in the beginning of this section.

In general the bootstrap and the jackknife provide different representations of B.

But when the bootstrap sample size is k, IXTD*XI - 0 for any bootstrap sample with

support size less than k. The remaining bootstrap samples with support size k are

identical to the jackknife samples of size k. Therefore the bootstrap resampling and the

jackknife resampling, both with resample size k, give the same representation of B.

Theorem 2 was proved by Subrahmanym (1972) for the special case r - k and extended

to general r by Hoerl and Kennard (1980). (They were kindly brought to my attention by

D. B. Rubin and W. Y. Tsai.) The singularity problem of XX s was not rigorously handled

in their theorems and proofs. The same problem will surface again in variance estimation

(Section 5), where such a negligence will lead to incorrect results.

The subset LS2 B is related to the full-data LSE B by (Bingham, 1977; Cook and5

Weisberg, 1982, p. 136)
(3-6iT T * T -IT

(3.16)0 B 0 (X X) X-r_ (KX Kr
8 S' S_8

where s is the complement of s and
r_ y_ - B

(3.17)
r - y - X,

8'ss

are the vectors of residuals in s from fitting the full-data LSE B and the subset LSE

a respectively. Theorem 2 can be restated in terms of the residuals r_, r_
s S'85

associated with the discarded subsets s.

-9-
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Corollary 1. Par any r k I, r-, r- defined in (3.17),
a O's

(3.18) Xj fxixr - j 1 1 I( 1 1X) Ir -0

*sr

where the terms with singular XTX are defined to be zero.aus

For r - n-I (delete - I jackknife), (3.16) reduces to the familiar normal equation

E x iri - 0, r i -Yi x 6 . Formula (3.18) may be useful in regression diagnostics when the

diagnostic statistics involve deleting more than one observation.

Theorem 2 can be trivially extended to the weighted least squares estimators. 1rAt

V - diag(ul. . .. ,un) be the diagonal matrix with elements u1 > 0 and Webe its square

submatrix corresponding to the set a. Let the full-data weighted 1.83 and subset weighted

1.83 be denoted by

(3.19) 8 (1W X) ,XV ,B (XV.-, )-, T XV

By applying the transformation W 2~ to X and y, and -1/ to X. andye

Corollary 2 follows from Theorem 2.

Corolla!y 2. For r > kc,

(3.20) T -1

sr

where the terms with singular T-IX are defined to be zero.

Formula (3.20) for r - kc is of particular interest, since 0 is identical to the

I5

unweighted 1.8E 0 - x- y if X exists. Therefore the weighted 1.83 ; is a convex

combination of the unweighted 1.8's 8 based on the subsets of size k. As a conse-

quence, the collection of the weighted 1.8's with any positive weight matrix in contained

in the bounded convex hull spanned by the finite number of unweighted LSE's based on all

subsets of size kc. Rubin (1978) proved this result and noted its use in proving the

convergence of certain iterative reweighted least squares algorithms as was later done in

Dempster, Leird and Rubin (1980).

-10-



Koenker and Bassett (1978) introduced a concept of "regression quantiles' for the

linear models as a natural generalization of the r 4
inary sample quantiles for the location

model. As a special case, the least absolute deviation estimator is the regression

median. It turns out that the sat of regression quantiles is identical to the convex hull

of B with a in Sk (Theorem 3.1, Koenker and Bassett, 1978). This connection suggests

that the representation (3.15) may be relevant in robust regression. In the next section a

class of robust regression estimators will be proposed by exploiting this representation.

4. An awlication: some new robust regression estimators

As in the previous section we shall use the simple linear regression model (3.1) to

illustrate the main idea. The least squares estimator ; of the slope parameter, being a

weighted average of the peirwise slopes ij (3.4), is not robust in the sense that it can

be heavily influenced by a few extreme values of y. Theil (1950) and Sen (1968) suggested

the (unweighted) medians of Bij as a more robust estimator. Jeeckel (1972) considered

the weighted medians of ; ij" Jaeckel (1972), Scholz (1978), and Sievers (1978) proved

that an asymptotically optimal choice of weight is clx j - xil. Note that lxj - xil is

different from the weight (x - xi)
2 

in the representation (3.3). From the optimality

property of the least squares estimator, the weight (xj - xi)2 is optimal among all

linear unbiased estimators of B.

The representation of ; in terms of Bij suggests a host of robust modifications.

An important class is the following weighted trimmed regression estimators. Let I -

((i,j) : 1 C 1 < j 4 n, xi F6 x and = t. Order the Oijo Uj) * 7, into

^ 0 ... C B et w be the weight associated with Si, and w(i the

corresponding weight associated with 5 (i) The (a 1 ,a 2 ) - trimmed regression estimator is

defined as

w() / 2 w(i) 

m1+1 mi+1

(4.1) 
1

I k
1w i) - W(i) a 2

k-m 2+1

In tr the lower 100 a ' and the upper 100 a a (according to the weighted empirical
t'1 2

-1r



distribution of ;(B) with weight w(M)) of the pairwise slopes BiS are trimmed. The

trimmed regression estimator (4.1) covers both the least squares estimator and the weighted

median estimator an a1 and a2 vary. From the above discussion, for aII a2 close to

zero wij a (Xj - xi)
2 

should be chosen: and for a1,a 2 close to 0.5, w a Ix - xil

should be chosen. The optimal choice of wij for general aI and a 2 depends on the

asymptotic distribution of Str, which is beyond the scope of the paper.

Assume k - (n), i.e. < xj for all i < J. The breakdown point (Huber, 1981) of

the unweighted (aQa) - trimmed regression estimator (4.1) (with wij - 1) is computed as

follows. Let m of the n Yt values be perturbed. The percentage of the pairwie.

slopes ijnot affected by the perturbation is
n-dm

1- -1- (1- M)(1 -- ) -0 2f - f2  f =
(n) n n-I - n

which equals a iff the percentage of the perturbed y values equals I ( ,
*

(4.2) f =1- 

which is the desired breakdown point. For small a, f zj. The breakdown point f* as a

function of a is given in the following table.

a 1 0.5 0.4 0.3 0.2 0.1CI

f 0.293 0.225 0.163 0.105 0.051

Notice that the Theil-Sen median regression estimator has a breakdown point 0.293. For

general weighted trimmed regression estimators, no simple formula like (4.2) is available

since it depends on the particular weight system. Robust regression estimators with high

breakdown point are considered in Siegel (1982) and Rousseeuw (1984).

One can also consider the (c1te2) - Winsorized regression estimator by taking the

weighted (clo.2) - Winsorized (Huber, 1981) mean of ;('). Other robust alternatives are

straightforward.

For the general regression model (3.5) and the subset least squares estimates a
5

(3.14), a weighted trimmed mean of $a, 0 a S r, can be obtained by (i) ordering the

vector-valued a according to some criterion, e.g., the Mahalanobie distance, convex hull

triming or ellipsoidal triming (Titterington, 1978), (1i) trimming the extreme values and

-12-



(iii) taking a weighted average of the remaining ones. The weight can be proportional to

IxTx, or to IxI where the power A is chosen between 0 and 1. Another way is
s

to apply the weighted univariate trimming to each component of B separately.

For the delete-one jackknife, r - n-I, our proposal results in the following

estimator n-s
. ri2 ;(1)/n, -wli

(4.3) trJ(I) F2(1 - i  B
" -il+1 i-Mm+1

1 1

where I(l are the ordered values of B-, i - ltl)n, B i - SE of B with the i
th

observation deleted, w(i) is the wj - xx TX) 'xj associated with ( (in later

sections we shall denote Bt by 
8
(i)* ) Hinkley (1977) proposed a similar estimator, the

main difference being that his "ordering" is on the weighted pseudo-values Q, "

+ n(-wi)(-00i). without a detailed study, it is hard to judge their relative merits.

We merely point out that IQ 1 - > 1  - BI if wi 4 1-n 1 . This follows from (5.15)

and (6.8).

Other regression L-estimators have been considered by Bickel (1973), Koenker and

Bassett (1978), Ruppert and Carroll (1980). The main difference between our proposal and

theirs is that the former directly involves repeated estimators of B while the latter

depend on the residuals. This may provide a clue to the possible advantages of our

proposal.

Finally we consider a class of robust regression M-estimator obtained by minimizing

(4.4) w iB -B)
ses

r

where we may be proportional to IxTxal or some other weight function, n( -

a - 1), I SO - Of is a distance measure of n - 8, and i is a scalar function

discussed in Huber (1981). For wa - Ix xal and n Euclidean distance, the regression

N-estimate (4.4) reduces to the ordinary least squares estimate via Theorem 2. Hinkley

(1977) proposed a similar estimator for the delete-one jackknife in terms of the weighted

pseudo-values Qi
o 

Since (4.4) requires more computation than the usual X-estimator, it

can not be recommended for practical use until further desirable properties are documented.

-13-
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5. General weighted jackknife in regression

Miller (1974) extended the ordinary (unweighted) jackknife to the regression situation

and proved som asymptotic properties. Since the subset LSBes are not exchangeable,

unweighted jackknifes do not seem natural. As a consequence, the acclaimed "bias-reducing"

property of the jackknife in the location case is lost here and the unweighted jackknife

variance estimator is biased even for linear parameters. Recognizing this problem, Hinkley

(1977) proposed a weighted jackknife and demonstrated its desirable properties. Both dealt

with jackknifing by deleting one observation at a time from the full data. In this section

we propose a class of weighted jackknife variance estimators of the LSE 0 by deleting any

fixed number of observations at a time. Jack-knife estimation for nonlinear parameters

will be considered in Section 7.

Since jackknifing by deleting d observations is equivalent to retaining r - n-d

observations, all the results of this section will be in terms of Bs" the LSE based on

the subset a. The proposed jackknife variance estimator by recomputing the LS for each

subset of size r is
I I a a T(

r-k+1 r(5.1) vJ,r" T Ix;

seS
r

n-k -1 T  -1 T " a )T
(5.2, " r-k+1) r x.,1(08 - B)(6"°)

Ser

where XTK are assumed nonsingular for all a e S and (5.2) follows from (5.1) viaa'sr

Lemsma 1(u). Under the ideal assumption that the errors ei  in (3.5) have constant

2
variance a , we prove that vo,r satisfies the minimal requirement that it is an

unbiased estimator of the variance of ; under the sme assumption. Other properties will

be taken up in Sections 6 and 7. 2I
Theorem 3. If Var(e) - a 2I in (3.5),

2 T I a
(5.3) E(vJr) -a (X X) Var(S)

a__aT ___,T - ., -iT .r y. ,,
Proof: From (XX) (y X (X)-Yr, where re X , t~ ss *~ 5 -y-XBis the

-14-
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residual vector for the set a,

(5.4) J ( )(s " ) " Ix XI(x~X)"X rX (X)

and its expectation is

IXT Xx,)'x(1 5 -( x (x i x (xTx1
S~~~~ 0 8 a

(5.5)

-XT I(X.kxx5 - IX.I(xTxr

where I is the identity matrix for the set a. From Lamea 2,

• TX (r-k+') IX XI(XTX)
1

F 1XTX 8 (X1) a -k-I
SeS

r

and from Iama I(ii),

-ixkxl(Ix) 1x- (fl

r

which, together with (5.5), imply

.n-kItx.% t; 1(O )(0. ;)T) .I CrIk lt X)%

r

and thus proving the result.

The factor

r-k+1

n-r

in vJr can now be given a statistical interpretation. The sampling error ;-6 has

2 N- . -Ivariance o (XTX)" . Given ;, the "resamplinq error B - 0 has " VJr as its

(weighted) "resampling variance". Due to the unbiasedness result (5.3), the original

sampling error ;-B and the resampling error B - 0 have different stochastic orders.n

The purpose of the scale factor A is to make the two errors of the same order in the

following sense,

(5.6) Var('(8 5 - I)) - Var(O-B) + lower order terms for all a

In fact, we have, from (5.3),

(w.6)rsa r B - B) - Var(B-0)

SSr

where the weight wa is proportional to IXXllj. In particular, for p - 1, this reduces

to

Var(/r(0 j )) - Var(;-B) ,

-15-



since we in a constant. In general, if the weights w. are uniformly bounded away

from 0 and 1, (5.6) follows from (5.6)'.

The implementation of vJ,r , r ( n-1, and its extensions in more complex situations

(some described in Sections 7 and 9) may be too cumbersome since rn computations of A

an XTXI are required. As in the bootstrap method, it is suggested to use a Monte

Carlo approximation:

(i) draw Ji subsets randomly without replacement from Srj denote the collection of the

selected, subsets by S,

(ii) compute the variance estimate

r-k+l ass 1~~8 )B )

r n-I

singular for any 5 k For a 8k - X_ yo, B - ; - X* lr,, re in (5.4), and
6~ ~ 5k S'0 i a

-XT 1( )(0 X6X.I -,X) )T T T Ix;rr~r - adi X* r5 r(adj X*T note that adi XsF

the adjoint of X5, is always defined whereas tIX..1 is defined only for nonsingular

Xe a This suggests defining

(5.7) v Jk T 2. x81 (; a 0)(;* a
(n-k) X XI se;

__ _ TT
(5.0) -k a (adj X 8)r ar a(adj X)

(nkIXTXI 5OSk 5

where (5.7), a special case of (5.2), requires Isi1 ,' 0 for all a 0 Sk while (5.8) is

well-defined without any additional restriction.* The proof of Theorem 3 works for the

variance estimator (5.8). The only change involves replacing (5.5)' by a similar identity

in term of the adjoint matrices (ase (2.3)). For v Jk we can establish the following

coincidental result, which also implies the conclusion of Theorem 3.



Theorem 4. When the subset size is equal to the number of regression parameters, the

jakknife variance estimator vJ~ (5.8), is identical to the usual unbiased variance

estimator
T

(5.9) var = a CX )-l ,2 a - r =y - I

Iroof: Note that

(adi X )r* (1 i+i11(iM 13 Cr
s(i) iij si j

(5.10) M MFIii xi ~ i( 1

where X M - matrix obtained from deleting the j th row and the ith column of X., rz,s(1

jth element of r a, Xji)(r.) - matrix obtained by replacing the ith column of Xx by

re. The last equation of (5.10) follows from the usual result on expansion of determinant

(Noble, 1969, p. 208). From (5.10), the Ci,j) element of the matrix

( adj X )r r T adj X T in (5.8) is equal to

(5.11) Ix M () I IX (J) r )I - (IX)T X(01
aX ar) a 0 -

where X C r) is the matrix obtained by replacing the ith column of X by the residual

vector r. Since X)r, is the k xC umtixo r) with rows corresponding

to the subset s, (5.11) follows from Leme 1(i). Noting that r is orthogonal to the

other columns of X U) () from the normal equation x~r - 0, the (i,j) element of

Ci)T (i) T 7 th
X Cr)X CE) is ;r Z, and the other elements in its it row and j column are zero.

This gives

(5.12) Ix" (i)x CM)I - C-I)j T iT1Ci)1~ )

where XMi is the submatrix of X with its ith column deleted. From (5.8), (5.11) and

(5.12), we have T

v Jk X ((-I ~. i+IXC±)TXC"Il i(n-k) 1XrTxI l

~ - adi X X ~2 T -1

(n-c) 7XX XX



A

A bootstrap resampling method also leads to the estimator var, (5.9). Details are

in section a.

Theorem 4 was proved by Subrahuanyan (1972) for the variance estimator (5.7) (not the

more general (5.8)) by assuming IX81 j 0 for all s in Sk. It is important to distinguish

(5.6) from (5.7) in came Jx•J - 0 for some a. For a subset a with IX.I - 0, it is

incorrect to interpret x212(; - ;)(;a - ;)T in (5.7) to be zero an was done before in

the representation theorem. This is obviously so since the more general expression

(adj Xd)r• rj(adj X•)
T  

in (5.8) for singular or nonsingular Xa is nonnegative definite

and is in general nonzero for singular X5. Such an incorrect interpretation of (5.7) will

^2 T -1
lead to a variance estimator smaller than a (X x) . A simple illustration follows.

Consider the simple linear regression model (3.1) with k - 2. The jackknife variance

estimator vJ, 2 for the slope parameter 0 has two forms

(5.13) v 2  (xi x 2( _ x )2

i~j X,

n
(5.14) - c I Y1 - (xi xj)) 2

where c - (n(n-2)1(x-x) 2) 
- 1

, (5.13) comes from (5.7) and (5.14) from (5.8). In terms

of the residuals e = Yi " - x i , (a,B) - L8 of (aB), (5.14) equals

c r (e-e 2 (x - x2)-, (n-2)- I 2

i<j 1 1

Apart from the constant c, the contribution of the pair (ij) with xi = xj to the

- 2 2
variance estimate is (ei " e) . (y1 " y) which measures the variability within two

repeated runs. Interpreting terms in (5.13) with xi - xj as zero amounts to ignoring the

internal variability of the responses with the same x value, thus leading to under-

estimation of the true error.

At the other end of the choice of r is the jackknife variance estimator Vj,n I

obtained by taking every subset a of size n-1, or in a more familiar language, by

deleting one observation at a time. For each s in Sn-II let i denote the element not

in •, and write X. X(i) . We shall adopt the notation that the subscript "(i)* added

. -18-
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to a quantity means "with the jth observation deleted," and in a similar spirit, use v J( 1 1

for the "delete-one" jackknife variance estimator v From IXTi)X ±I _ (l-.wj)IX TII,
Vj ( X)xi (5.2) and

(5.15) T -1 -
(5.i15 0 (X X) x ir i -w il

where F is the LSE of 8 with the it observation deleted and ri T 0i- is the
M (i) k

i th residual, vJ(1) takes a simple form

(5.16) v n() (- ( M -BO()-0

2

(5.17) XTX)_1 r L XT (X)-1

It turns out that vj( 1) enjoys a model-robustness property, which is the main theme of

the next section.

6. Model-robustness of the weighted delete-one jackknife variance estimators

In Theorem 3 the general weighted jackknife variance estimators vj,, are shown to be

unbiased for varCO) if the errors are homoscedastic. it is natural to ask how vJ~r

will perform under violations of the homoscedasi~city assumption. Since under the

2 2
heteroscedasticity assumption var(l) - diaq(O1 ,...,o n), the variance of ; is

(.)VarCO) - (XTx)1, ai x i 2(XX) -

From comparing (5.17) and (6.1), it seem that vj(1 ) is robust for estimating Var(O).

(6.1), under the broader heteroscedasticity assumption. This remarkable aspect of both

vj(i) and a related variance estimator will be treated in this section.

The asymptotic computations (as n becomes large) will be done under one or several

of the following assumptions.

(C) 1. Let indenote the X matrix in (3.5) for n observations,

-19-



T T -1 c
max x(XnX x 1 C , , c independent of n.

2. max < < .

1<t<"

3. The minimum and maximum eigenvalues of - X are uniformly bounded away from
n n n

0 and .

4. The elements of I are uniformly bounded.

From comparing (5.17) and (6.1), the unbiasedness of vj(1) for estimating Var(O)

hinges on the relation Er
2 

. (1-w )a . Conditions for its validity or approximate

validity are given in the next lem a.

LAi 4. If

(6.2) wij - xi(XTX)'lxj - 0 for any i,j with ai A oj

then

(6.3) ar2 -(1-w )a2 i w - xTx -lxSi i , - i i

More generally, under the assumptions C1 and C2,
(6.4) B2 - (1-w)a + O(n-

where the big 0 - notation O(n
- ) denotes terms of order n

"1
.

T' T T -1T
Proof: From ri -Y,-x x (X X) X e,

2 2 _ 2 n 2 2 2(6.5) gr = -2w 10 +I iaj (- )a +I i a aI

T -. 1 ,.1 n 2where wi - x i) and the second equality of (6.5) follows from wi - wij. It
i-i

is now obvious that (6.3) follows from (6.2). Assuming C1 and C2,
IF .2(02 - 2), 4 2 (max 02) F w2 - 2(max

i i

which is of order n-
1
. Therefore (6.4) follows from (6.5).

By comparing (5.17) and (6.1), the following result is obtained as a direct

consequence of Lms 4.

-20-



Theorem 5. under (3.5)

M RJ(a) - Var(O) under (6.2),

ii) EVJ( ) - Var(;)(1 + 0(n1 )) under (Cl - C2).

We are not able to prove a similar result for the more general vJ,r* We conjecture

that v3 r is also robust in the above sense for r close to n. This is confirmed in

the simulation study of Section 10.

The assumption C2 is weak; Cl is also reasonable since it is easy to show that it is

implied by C3 and C4. C3 says that XTXn grows to infinity at the rate n. Usually a

stronger condition like n'lTXn converging to a positive definite matrix is assumed

(Miller, 1974). On the other hand, (6.2) is a more restrictive assumption. Let q be the

number of different a,'a in (6.2). Then the linear model (3.5) can be rewritten as(6.6) -i = XkB 2
T 2

) Yk +ik' Seik 0, Var 5ik - ai , k = l(1)ni. i - 1(1)q

with uncorrelated errors. Let Ti be the subspace spanned by Xik, k - 1(1) ni . According

to (6.2) Ti i - 1(1)q. are orthogonal to each other with respect to the positive

definite matrix (XT X) "1. Writing dim(Ti) - dimension of Ti in Rk, we have

i dim(Ti) - k since Ti, i - I(1)q, generates the column space of X, whose dimension

is k. A special case of (6.6) ia the k-sample problem with unequal variances. TAt

Xik " x. for k - l(l)ni. Then xi, i - 1(1)q, are orthogonal to each other

w.r.t. (XTX)"1 , which forces q - k. By writing 06 - x T, (6.6) becomes the k-sample
ii

problem

2
(6.7) Y i  + e0k Is 0, Vereik - oi , k - 1(I)ni , i - I(I)k

The k x k matrix ZT - [X,...,xk) is nonsingular and 8 - (Oe ,... , k) - z8 is a

reparametrization of S. We shall come back to (6.7) later.

Closely related to our v,,1 ) is a weighted delete-one jackknife method first

considered by Rinkley (1977). His approach is via the construction of pseudo-values in the

hope that the nice properties of pseudo-values in the location model would carry over to

the regression model. Specifically, define the ith weighted pseudo-value

(6.6) + n(-w) + n( X T X) xirr w' in (6.3)

-21- 4
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Note that Qidiffer@ from the unweighted pseudo-value in that the weight ( 1 -wi) is

attached to n(8-0() and that (1-w) is proportional to IXTi)X~i Hinkley (1977)

pointed out thatn

(6.9) n 1Q

The right hand expression of (6.9) in the usual jackknife point estimator in terms of the

pseudo-values. (6.9) is also a special case of the general representation (3.15). He then

defined the jackknife variance estimator in terms of Q

v H(1) - n(n-k)} '(±B)Q--

2

n ri TT-
(6.11) =(X ) -1 -j x x T(X TX)

I 1-n k

as a direct extension of a similar definition in the location case. From comparing v HMl

(6.11), and v J(1 ) (5.17) it seems that vH "M is also robust in the sense of Theorem

5(11). The comparison is however more favorable to the latter. Under the ideal assumption

2 2 2 -t 2 22'-?Var(e) - a 1, a -i (1-.w i)a pi (1-n k)a . Therefore Rv H(I) (ia XTX) , although under

2 2'-1 -
(Cl) the difference is of lower order, i.e., EvH(I) - (I CXxi) '(1O(n ')) since -r

-1 2 -1 2 -1I
(1-n k)a . (nt k - wi)a . O(n ) under (Cl). under the broader assumption Var(s)

dac 2'.. 2 ), i Var(5 (XTX)_1 n G02X x T(X T X) -1even under the restriction (6.2)
dg( 1 .. , n 1MIi

of Theorem 5. As in Theorem 5(11), v H(1) is approximately unbiased under (CI - C2),

i.e. ZvR(1) - Var(B)(1 + O(n ).This in because

2 -ri 1~i 2 -1 2 -I
3 - = a + O(n a o + O(n )

l-n t 'k 1-n 'k

where the first equation follows from Lsma 4, (6.4), and the second equation follows from

(Cl). The results concerning vH(1) are summarized in Theorem 6.

_ _ 2
Theorem 6. Mi Under Var~e) -a I and (Cl), L~H(1) 0 Var(O) but

t H -Var(;)( +O0(n-'))

-22-



2 2
(ii) Under Var(e) - diag(a,..., ) and Cl - C2),

Ev H(I) - Var(B)(1 + O(nl))

Unlike VJ(I) the exact unbiasedness EVH(I) - Var(6) does not hold true even in

special cases. In the simulation of Section 10, vH(1) is found to be more biased than

other estimators for both equal and unequal variances. Theorem 6 is a more rigorous

version of what is essentially in Hinkley (1977). The strong consistency of vH(1) was

established in Hinkley (1977, Lemma. 2 of Appendix) by following Miller's (1974) proof for

the balanced jackknife. The strong consistency of vJ(,) can be established in a similar

manner.

Standard asymptotic justifications of the jackknife variance estimators are in terms

of its consistency and the normality of the associated t-statistics. They confirm that the

jackknife method works asymptotically as well as the classical 6-method. Then, why should

the jackknife be chosen over the 8-method except possibly for computational or other

practical reasons? The "robustness" of vj(1 ) and vH(1) (Theorems 5(11) and 6(11))

against the heterogeneity of errors, first recognized in Hinkley (1977), is a truly fresh

and important property of the jackknife methodology. (Practically speaking this advantage

should be put in the context of nonlinear estimation, Sections 7 and 9.)

To further appreciate this point, let us consider the robustness aspect of the usual

^ 2 T -1 2'.. 2n^-w-2variance estimator vat - X 2Xx) - . For Varle) -diagloa,...a 1, from (6.5)

Z;2 n I- 1w 2 -2

Therefore

(6.12) 9 var = j2(XTX)

is equal to

Var(B)( + O(n (a - XX 0 + OWn))x x i(XX W'

if max~ao - a2 I o(n ), or equivalently,i

(6.13) max 0 - min 02-O(n
- 1

n 2

since a2 is a weighted average of a 2 The condition (6.13) is sufficient for the
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robustness of vQr in the sense of Theorem 5(11). However the result is quite

uninteresting since (6.13) forces the variances to be nearly equal for large n. A

detailed comparison of vj(1 ), VH(1)s var and other bootstrap variance estimators for the

2-sample problem will be given in Section 8.

To close this section, we shall make two other remarks.

1. Tukey's reformulation of Quenouille's jackknife in terms of the pseudo-values works well

for the i.i.d. case. Its extension to the non-i.i.d. situations may lead to less desirable

results as is evidenced by the slight inferiority of vH(1) to VJ(1). A more striking

example is offered in the context of inference from stratified samples. Two jackknife

point estimators have been proposed in terms of some properly defined pseudo-values, both

of which reduce to the usual jackknife point estimator in the unstratified case. It was

found recently (Rao and Wu, 1983a) that neither estimator reduces bias as is typically

claimed for the jackknife. On the other hand a truly bias-reducing jackknife estimator was

not motivated by the pseudo-values.

2. We suppose that the purpose of jackknife variance estimation is to aid the point

estimator 0 in making inference about B. The variance estimators are then required to

be nonnegative and almost unbiased. However in situations like the determination of sample

size, the variance itself is the parameter of primary interest and other risk criteria like

the mean square error (MSE) will be more appropriate. In this context, a nonnegative

biased estimator (J. N. K. Rao, 1973) and MINQUE (C. R. Rao, 1970) (which may take negative

values) have been proposed. Horn, Born and Duncan (1975) proposed (1-wi)l ri, which

appears in vJ(1)I (5.17). as an estimator of a and called it AUE (almost unbiased
i

esi .e S of (1-wi)'rI was shown to be smaller than that of MINQUE in a wideestimatr ).Th Sof 1-ilr

range of situations (Horn and Horn, 1975). It is difficult to extend this comparison to

estimation of the variance-covariance matrix.

7. Jackknifing for nonlinear parameters

So far we have confined our study of the jackknife to the linear parameters as an

important test case. Their utility as a practical tool is more appreciated in the complex

-24-
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situations where no exact results are available. In this section we first consider a simple

nonlinear situation. The parameter of interest 8 - q(B) is a nonlinear function of the

linear parameter B in the model (3.5). The natural estimator of 8 is 8 - g(;). In

this and the next section we will consider variance and interval estimation for q. Bias

reduction of ; will be considered in Section 9. Extensions to nonlinear regression

models will be briefly outlined later.

A natural extension of the general weighted jackknife variance estimator vjr,

(5.1), for the nonlinear estimator 8 - g(B) is

rX aX "( ;)(;a T 8)

(7.1) ( r-k+1 
e s r

Jr n-r E ,x.' '
ses

r

where 8- g(B a and 0 is assumed to exist for any a e r" Another extension of

Vj, r is

Sx. xl(. - e),8 a - 8)
ses r

(7.3) 8o~ (B), B =B+ ~ -

(7-3) we " (0s a), " n-r a

Both can be implemented by Monte Carlo approximation as in the linear case. In (7.2) the

scale factor fr-k+1/'n-r is applied internally to 0 - B, while in (7.1) it is applied

externally to 8a - 8 after the transformation g. Under reasonable smoothness conditions

on g, both v J,r(0) and v J,r(8) will be close to the linearization (or 6-method)

variance estimator

(7.4) vtin  v g'($) rg'(;)

where g'(B) is the derivative vector of g evaluated at 0. For variance estimation

there is perhaps little difference in choosing between v j,r(8) and Vjr (8). The

internal scaling (7.3) turns out to be instrumental in the following construction of the

jackknife distribution based on repeated sampling of subsets of size r:

(i) draw subsets s1,...,s j  randomly without replacement from Sr'

-25-
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(ii) construct a weighted empirical distribution function CDFJ(t) based on g(A a a

defined in (7.3), i - 1(1)j, with weight proportional to IiX I.

Similar to Nfron's (1982) bootstrap percentile method is the Jackknife percentile

method consisting of taking

(7.5) [CDFJ (a) , CDFJ (--a)]

as an appropriate 1 - 2a central confidence interval for 6. Since AD i(t) is a

discrete function, (7.5) is computed with a continuity correction. For multiparameters

8, a confidence region can be similarly constructed once the shape of the region is deter-

mined. Efron (1982, Chapter 10) considered the smoothed percentile, bias-corrected

percentile and bootstrap t as modifications of the bootstrap percentile method. The same

idea can be applied to the Jackknife percentile method in a straightforward manner. It is

more natural to apply the internal scaling (7.3) since ; is the center of the weighted

distribution of B due to the representation result, Theorem 2, while 6 may be shifted
5

from the center of the weighted distribution of 8 due to the nonlinear distortion g.5

For this reason we think (7.2) may be more natural than (7.1). The issue of internal or

external scaling also arises in the context of bootstrap inference from stratified samples,

where it is found that a standard bootstrap method involving a single external scale

adjustment gives rise to incorrect variance estimate (Efron, 19821 Bickel and Freedman,

1984), since the corresponding internal scales vary from stratum to stratum. This

observation has led Rao and Wu (1983b) to construct a valid bootstrap method by applying

the internal scale factor within every stratum before applying the transformation g.

In a more complex situation like the nonlinear regression model

(7.6) Yi - f 
(
0
) 
+ e, 1

where fi is a nonlinear smooth function of B and the error ei satisfies the

assumptions in (3.5), the Jackknife variance estimator v Jr, (5.1), has a natural

extension, namely, to replace X X by I f-(B)f 1 (O) with i summing over a and to

interpret 0 and 0 as the nonlinear least squares estimates based on the full-data and5

the subset a, f'(8) is the vector of derivatives of fi with respect to B. we may

consider alternative weight functions to avoid the computation of fj or by evaluating it

-26-
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at other estimates B Another approach that requires less computations was proposed by5

Fox, Hinkley and Larntz (1980). Confidence intervals can be constructed from the jackknife

histogram based on 0., (7.3), with the weight function discussed above. Their properties

and a similar extension to the generalized linear models will be reported later.

The term wjackknife" is commonly identified in the literature with the delete-one

jackknife. According to Efron's (1982) simulation results, the delete-one jackknife does

not in general perform as well as the bootstrap. We think there are two reasons for

this. First, the delete-one point estimate 6(1) - g( (i) is too close to 8 = g(0) to

reflect the true variability of e - -(;) - g(O) The linearly adjusted

n-k (8 l-e), though correct to the first order, does not take account of the

nonlinearity that the function g has undergone between B and 8, since B - 8 is of

Mlarger order of magnitude than 6~i - B.* For nonsmooth 6 like the meditan in the

location case, the delete-one jackknife variance estimator is not even consistent. The

second reason is that the delete-one Jack-knife generates exactly n resampled estimates

6 . Except for very large n, they do not provide enough values for constructing

histograms. This is why the delete-one jackknife method is traditionally associated with

variance estimation. The resulting symetric confidence intervals of the form

[8 - to, 8 + to] have a serious drawback, namely, they can not reflect the possible

skewness inherent in the original estimate 6 around 6. On the other hand, the

histogram-based confidence intervals do reflect the skewness in 6. For the bootstrap

method, this was rigorously established in Singh (1980) for some estimators.

This and the fact that 0* - 6 and 6 - 8 are of the same order of magnitude, where B*

is the bootstrap estimate of 6, perhaps explain the general good performance of the

bootstrap histo-qram methods over the delete-one jackknife method.

It should be clear by now why we propose the general jackknife method by deleting more

than one observation. It generates more pseudo-replicates of 8 to allow for the

construction of a histogram. For n - 20, the delete-two jackknife generates 190 values

instead of the meager 20 values given by the delete-one jackknife. Regarding the

question of the choice of r, we may choose r to make the scale factor (r-k+1)/(n-r)
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near one, that is. r -(n+k-i)/2. This choice guarantees that S-6is of the same

stochastic order as 0 - S and makes it unnecessary to perform the Internal scale

adjustment (7.3). For the location problem kt - 1, choosing r - areduces to the half-
2

sampling procedure (2f ro.n, 1982, Chapter 8).* Another advantage of choosing r near (n+k-

1)/2 is in variance estimation when the parameter of interest is not a smooth function.

The inconsistency of the delete-one jackknife variance estimator for nonsmooth estimates

like the median can be avoided. in the context of complex sample surveys, the balanced

halt-sample method of McCarthy (1966) is found to provide more reliable confidence

Intervals than the linearination method and the jackknife method in the empirical study of

Kish and Frank- (1973).

8. bootstrap and subset sampling in regression

Can the previous results for the jackknife be extended to other resampling methods?

For a given resampling method denoted by *, S* and D* defined in (3.7), we would like

to find a variance estimator of the form

(8.1) v - xg~w*cs -6( -6

where the weight w* is proportional to JXTO*)XJ and E~w* 1, such that it satisfies

the minimal requirement (as in Theorem 3)

(6.2) 3(vlVar(e) - o2 
1) a 02 (T )-i

The left hand side of (8.2) is equal to

Xff .{wa(XD X) -1XTD * X(XTD X) -- wt(X X) -1

(8.3) - IAd (m~fw*(x TD X)- X TD *2X(X D X) -1J - (X T ) -1

The first term inside the curly bracket of (8.3) seems intractable except for

(8.*4) el2 . e digP,. ,-

which is equivalent to Pi - 0 or I for all i. This prompts us to consider procedures

satisfying Assmption (9) and condition (8.4), whose defining probabilities

(8.) roa1,i remaining P 0) - Xr

r
are independent of the subset (i 1 ,... eird where cr is the probability of resampling a
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subset of size r, ck+. .+%n -1. When Cr -1, (8.5) reduces to (3.13), the jackknife

with fixed subset size r. Therefore we call any procedure satisfying (3) and (8.4) a

subset sampling procedure. Son* may prefer to call it a variable jackknife. Back to

(8.3), its first term under (8.4) in

KeIXT0 11(XT0 )X- E. adj(i D*1)

B.IxT D *l X1 JX T vXI
whose (i,j) element is

r lx(,iz.ID li IX~~
(8.6) -( )i~j SOSk lU*5- a(i)a

ses k l a aD

- ~kl (li+JIX(J)x~) TkiT-
(8.7) -() - -c'- (i,j) element of (X X)

lk XTXI Uk

where the expansion in (8.6) is justified by Lemma 1(i) and

(8.8) Ui- ..- 1 c f~ (rni)

From (8.1), (8.3) and (8.7), for a subset sampling procedure *, we have found that the

variance estimator

(8.9) k-_ - 'Z xTD*lo_)*iT

a k 2.1DXI

satisfies the unbiasedness requirement (8.2).* For the special case of jackknifing with

fixd ubst izer, I n-r
fixd sbse sie r - 1 -k - and (8.9) reduces to the jackknife variance

estimator v J,rI (5.1).

Note that the scale factor in (8.9)

(8.10) ! - ' = ' k/U k - Icb(k - 1I Pk-i ' 1)
Uk I - OVUk- Prob,(P k - o1p, .. P k- - 1)

is a conditional odds ratio given that the first k - 1 units have been selected. For

jackknifing with subset size r, this alternative interpretation of the scale factor
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(r-k+1)/(n-r) may be useful.

Among those resampling procedures that do not satisfy (8.4), i.e. Prob,( Pi ;0 2 for

some i) > 0, we single out the bootstrap, (3.12), for further study. Unfortunately it

will be shown next via a simple counterexample that no variance extimator (8.1) for the

bootstrap can satisfy (8.2) in general. Consider the following regression model:

yi + 0 ill i -1,..,I

Y12 6 2 + 0 2'~ 1,., 2

with uncorrelated errors, to= 0 and Var a,, - a2, a 2. l * -(P*
1, 1a i2 2 11.. ln

be a resampling vector from the bootstrap method, (3.12), with the bootstrap sample size

m - n. Rewrite P -(Pill...,Pn I JO11" P 2 ) to correspond to the two samples of

2

(8.11) and define n1  'il 2~ . n- E 1P12 * hen

(8.12) n; : B(n, j-1,2

is a binomial distribution with parameters n and nj/ni and the conditional distribution

n,
(8.13) ((p j) In;) * ult ,(n, - I)f j - 1,2,

ii - n jn

is a multinomial distribution with nj independent draws on nj categories each having

probability 1/nj. Then 0 1 1 ~1  j - 1,2, IXTD-XI =n 1n; and

1; n 1 P~ji

where n - I I Plrom (8.13),

11

nn
(814 2 -1 - 2

I~ n1I

n n

-~~ ~ yi~ 
2  

-2 Be~

where1
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n n

1 2 2 2

Therefore we have

B.ITDX,(*_)(B_;T diag( * 8810 n
n1 2 2

Its expectation under (8-11) is

niq2  I n: 2  1)2)

which is not proportional to the variance of (060 20

2 2

va(18diag(2.,.I
Vr61 2) n n 2

unlessn n, - n2. Therefor*, no matter how A~ is chosen in (8.1), (8.2) cannot be

satisfied. in fact, its bias does not go to zero as n *-unlessrn n1 /n2 + 1.

From similar computations, it can be shown that the "nweighted bootstrap variance

estimator

(8.16) 210% i)(B*_6)T 1 1ig3(L 1e *! 2
n1  I 2  2

which in well-defined if n and n* 0 1. For small or moderate ni, Z - n )i
1 2 i 1 n

not close to (ni - a) nd the unweighted estimator (8.16) is biased. If n, and n2

are both large, 2,(n i I,~) (n i - 1) and (8.16) is almost unbiased. It is,

however, unclear whether this can be extended to general linear models even when the error

variances are equal.

It is not surprising that the unweighted bootstrap does not provide an unbiased

variance estimator, since, as in the case of the unveighted jackknife, the LON's B based
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on the bootstrap resamples are not exchangeable. What is more disappointing is the failure

of the weighted bootstrap. One would expect it to perform well since the same weight

function was used in jackknife resampling with satisfactory results.

If (8.11) is recognized as a two-sample problem rather than a regression problem,

unbiased variance estimators can be obtained by bootstrapping and rescaling within each

sample. But the main point we have tried to make here is that a result like Theorem 3

cannot be extended to the bootstrap method for the general linear model (3.5). It is

however unclear what will happen if the weight w. in (8.1) is chosen differently from

IXT'DXl.

On the other hand, the jackknife works quite well here. Routine computation gives

81 88
S dag(n (n W na(n2 -1) '

and
2 2

a 1
IV = diag(n, -ma)

.7(1 n n 2

The latter also follows from Theorem 5(i) since the model (8-11) satisfies (6.2). It can

be shown that the delete-two jackknife

VJ,n-2 , "(1)

and that
S SB2n2 2' 2 '

n1  n2

which is biased but becomes approximately unbiased as n I and n 2 become large. The

usual variance estimator

88I + S82_
var - diet( , n2

n2 1 2(!-

is unbiased for 01 - 02  approximately unbiased for a near a2, and biased otherwise.

T obtain valid bootstrap variance estimators, we can draw a simple random sample

-~~~ n . . is thei
is 1 ) 1  with replacement from the *population" (r i /.'1k/n} n r .Yi i e

residual. Define the bootstrap data yi = x L + oil i - 1(1)n, by treating B as the

true parameter with the above "population" of errors, and the bootstrap LSU is
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(8.17) B* -(XTX)-lXTy
*

For any nonlinear estimator 8 - 9(;), the bootstrap variance estimator is defined as

(8.16) vb - ;( -O)(O*-6)
T  

, 8 g() A in (8.17)

Note that 0 - is unweighted. When 6 = B, it is easy to see (Efron, 1979) that

1 21 (XTX) - 2 1 2
(8.19) vb - var a T X - - F 

r i

2
Therefore, for homoscedastic errors Va(e) - a r, vb is a valid variance estimator. For

*

constructing confidence intervals for e, note that each y vector is associated with

the same X matrix. The unweighted percentile method of Sfron (1982) is as follows.

Repeat the above procedure for B times. Define CDFB(t) to be the unweighted empirical

distribution function based on the B bootstrap estimates e*b, b - 1(1)B. The bootstrap

percentile method consists of taking
-1 - -1

(0.20) [CDFS (o), CDFB (1-a)]

as an approximate I - 2a central confidence interval for 6. The interval (8.20) is

computed with a continuity correction.

2 2
But for heteroacedastic errors Var(e) - diag(oI,. O n), vb - var does poorly as

demonstrated in Section 6 for the linear parameters. This should be quite clear from the

nature of the procedure. The assumption underlying the drawing of i.i.d. samples from

(r i/ 1_- ) is that the residuals ri are viewed as exchangeable. The first bootstrapi

residual e; may come from the tenth residual rl 0, and so forth. The heterogeneity

among ri is lost in this mixing process. On the other hand the delete-one jackknife, by

retaining the identity of the residuals, reflects the possible heterogeneity of ri and of

2
the error variance 

a .

Recognizing the model-dependent nature of the bootstrap residual method, Efron and

Gong (1983, p. 43) seemed to favor the unweighted bootstrap method since it "takes less

advantage of the special structure of the regression problem.* However, their next state-

ment that "the (unweighted bootstrap) method gives a trustworthy estimate of 8's

variability even if the regression model is not correct" cannot be substantiated as one can

easily infer from our counterexample.
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Since the basic principle of the bootstrap is to simulate samples that resemble the

unknown population, we must point out that the "population" (r /11-kI:/n) does not resemble

the true population of errors {s ) in that ri are mildly correlated with nonconstant

variances I1-wi)/(l-k/n) if Var~e) - o2 1. One possibility is to replace the n values

2,r i//f1k/n by n - k uncorrelated residuals a~ v ith variance o e.g. the BLWS

residuals (Theil, 1971). if the errors eiare assumed to be normal, e i are also

^ n-knormal. One may first apply a random orthogonal transformation T to {eI to obtain

n-k n .n-k
(T ad he dra iid sapl i-I from (To} A major problem is that~ the aw
the i.i.d. property of (e i) depends critically on the hofoscedasticity and normality

assumption.

9. Bias reduction

The nonlinear estimator 6 - 9(0) of 6 - g(B) has in general a bias of order

n- 1 . in this section we will show that bias reduction is closely connected with the

existence of an almost unbiased variance estimator. Assuming (C3) and the continuous third

differentiability of g in a neighborhood of 0, Taylor expansion gives

1OT;O +_ _OT -1.5
(9.1) 6=0+ q'(0 200 00 qP(0)(0-B) + 0 p(n )I

where 0O(n1.5 ) denotes term of stochastic order n- I.. From (9.1), the bias of6

(9.2) B(6) - 36 - 6 - -1 tr(g(0)Vhr(0)) + O(n -)
2

where tr is the tVace of a matrix. Since the reduction of bias of 6 amounts to

estimating 2(6) unbiasedly up to order n-2, we will focus on the latter problem for the

rest of the section. Data resampling makes it possible to estimate s(;) without

computing the Hessian matrix g"(0). First we consider the jackknife resaapling. tat

s - q(08) be defined in (7.3). Taylor expansion gives
. T 1- T .-.

(9.3) asa S+g'(0) (OS-0) + 1 (is*-;) q*(B)(f -R) + n

where n is the remainder term. If the weights we are uniformly bounded away from 0

and 1, athe discussion around (5.6) and (5.6)' implies that P - and P-0 hae, the

sam stochastic order. if we further assm

-0.5
(9.4) Opn
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and the continuous third differentiability or g around 0, ws have

(9.5) ai -0 (pn1

For the jackknife with subset size r, we propose to consider the following estimator of

(9.6) B Jr ' F~ wa(85 -0), We . 8

where )'is summation over a in S r. From (9.3) and Theore 2,

J,r 2 as a

(9.7)

i tr(g"(O)vJ,r) + w' w. -

Since g"(;)- g-(O) + 0(n5) and Z( -)Var(^) under (9.4) and Var() a 2 of

(9.7) is of order 0 (n- .5) under the eame assumption that led to Y1= ( 1 .5

since w 8 are assumed to be bounded away from 0 and 1. This leads us to the following

theorem.

{ Theorem 7. Assume (C3), the continuous third differentiability of g around 0 and that

the weights we are uniformly bounded away from 0 and 1.* For homoscedastic error*

Var(2) - a21

9( ;+ (-2)

2We assume (C3) in Theorem 7 since it implies (9.4) under Var(e) -aI

It is clear from the arguments leading to Theorem 7 that, for any general

Var(e) - V, as long as (9.4) and

-2
(9.8)~ E = Var(O) + O(n ) under Var(e) - V

are satisfied, the conclusion of Theorem 7 holds true. One such candidate is the delete-

2 2
one jackknife variance estimator Yj(or For V - diag(a 1 1 .. a , according to Theorem

5(11),
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PV J1 - Var(0)C1 + 0(n ')) under (Cl - C2)

-2- Var(O) + O(n ) under (Cl - C3)

where the second equality follows from Var(S) = 0(n-') under MC3). Since (CI) is implied

by (C3 - C4), we have the following corollary.

Corollary 3. Under the conditions of Theorem 7, (C2) and MC4), for heteroscedastic errors

2 2
Var(!E) - diag(alf,... a n)

-2)
(9.9) E BJ 1) - B(8) + O(n

where, wj - xTXTXlxi. B~)=S+ (;n-k (;i 0) and

n (1-w)

J9.10 Hi -iin-1 n-k fg(i) gO)

since v,(,) also satisfies (9.8) for v -ig~ 2 2 ,oewudepc

result similar to Corollary 3. Hinkley (1977) considered the following estimator of

9(8),
- n

and demonstrated its unbiasedness (without spelling out proper regularity conditions) for

the homoscedastic case. A stronger result will be proved next. Consider the expansion

(9.12) 9( q () + -0)~() + -!(; (±-~g()B .)+TM M 2 M i)

where the remainder term n(,C) - 0,(n-3) mince g'' is bounded in a neighborhood of 0

an Mi 00 P (n ). (9.12) gives

n
(9-13) ~ ~ ~ -tr{g"(O)vJ() 1w).7(1 2 3() Cw±r(1)

which reveals the surprising connection of the bias estimator B~ (1) with v.7(1) instead

of with its twin v,(1). Both Bj ) and v ()were motivated by pseudo-values

(Hinkley, 1977). (The connection seems to suggest that vj(1 ) is a more natural estimator

than vHflj)-) In Is 5, to be stated later, we will prove E n(l..W )) ' 0(n -1.
I i M p

which in conjunction with (9.13) and Theorem 6(11) yields the following result.
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Corollary 4. Assume the continuous third differentiability of g near 0 and (C2 - C4).

2 2
For heteroacedastic errors Var(e) - diaq(c1 .... an),

-2
3i1) - B(O) + O(n

The proof parallels that of Corollary 3, the key steps being associated with (9.13),

Theorem 6( ) and Lema 5. The main difference between Corollaries 3 and 4 is that some of

the regularity conditions required in Corollary 3 are automatically satisfied in Corollary

4. The reason is that B M is much closer to B than M to B. This brings home

the problem of choosing between Bj(1. and Bj(,. In terms of imitating the behavior of

g(O) - g(B), whose expectation is the bias S(), we prefer BJ() since it uses B(M

and S whose distance matches that of 0 -, whereas S M - in ;BJM is much

smaller than ; - 0. See the relevant discussion in Section 7. This difference will

probably not be detectable quantitatively unless g is markedly nonlinear. On the other

hand, for very smooth g, heuristic (in contrast to rigorous) computations show that the

error term Z(1-wi)1,(i) in ;J(1)' (9.13), is of stochastic order n"2 while the error

term r wa n in B Jr (including Bj (1), (9.7), is of stochastic order n-1.5,

suggesting that SJ(I) is a better approximation to S(O).

Lemma S. Under the conditions of Corollary 4,

E(1wi)r0(i) - OpCn
1.)

where n i is defined in (9.12).

a a k
Proof: Denote M (d ij) -1 . Since g'' is bounded near 0,

k n
(9.14) JI -i )n l M " I. (. ( " i )Id ij d itd mi

J ,f,m-1 i-i

where M < independent of n. Under (C2 - C4), it is proved in Lemma 6 that

=mx 'Oi) - 0 (n 5 ). Continuing (9.14), we have
1 () - 5 k n(9,.,) It('I- (i ) M ° 0p n'°' I,-, - w -i )Id itd iml

For I-rn,
n

(9.16) )(I-wi)Id I  - (1,I) element of vj(1) =0 p(n )
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for 1 0 .,
n

(9.17) F (--w1) itdinI 0 p(n

1

follows from (9.16) and the Cauchy-Schwarz inequality. Combining (9.15) - (9.17), we have

the desired result. 0

Note that 0 p(n - 1 . 5 ) is only an upper bound of the order of Z(1-w i)1i M ince

f() pO( n - 3 ) and the sum of n O(n - 3 ) terms is likely to be of Op(n 2).

2 2.

Lema 6. Under (C2 - C4), and Var(e) = diag(O2..., )

max(O(- "
)  

0 (n-0.5

i CM P
2

For Var(e) = a I, this follows from the proof of Lama 3.3 of Killer (1974). For

2
unequal a2. the only change involves using (6.4) of our Iama 4. Note that (C2 - C4)

implies (C1 - C3) as shown after Theorem 5. (CI - C2) guarantees (6.4) and (C3)

guarantees (XTX)- 1 = O(n-1 ).

For a general jackknife with subset size r, Bj( ) can be extended to

r-k+1
M1) B r-__1 w(gC 5 ) 9(O)), w in (9.6)9.8BJ,r =n-r 1 0 -aw

.sS r

The difference between B, r  and ;3,r  in analogous to that between V Jr(), (7.1), and

v J, (0), (7.2). The former applies the scale adjustment (r-k+l)/(n-r) externally and

the latter internally. As BJ,r does in Theorem 7, BJ, r  also estimates the leading tern

of 9(;) unbiasedly.

Let us now turn our attention to the bootstrap sampling. Since the unbiased

estimation for B(;) hinges on the unbiased estimation for Var(;), from the study of

Section 8, we need only consider the last bootstrap method, (8.16) - (6.18). considered

there. Let 0*= (X TX) IX y be the bootstrap LSE defined in (6.16), where * denotes

the bootstrap (or i.i.d) sampling from the rescaled residuals. From the unbiasedness of

the LSU,

(9.19) 3.* -5

and from (8.19),
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(9.20) 5,B - )0 0)-a(I 1)

is unbiased for Var(6) under Var(e) 021 . By repeating the steps (9.3) -(9.7) and

using (9.19) and (9.20), the proposed bootstrap estimator of bias

(9.21) Sboo - E. 0* e go

as equalB( to

(9.22) 1 2 trq()(7* I + -1 n

where Iis the remainder term of the expansion

+ +* 1 (* +
2

From (9.21) - (9.22), we have

Theorem 8. Assume (C3), the continuous third differentiability of g near 0and

(9.23) E0 T 0  (n

For homoscedastic errors Var(!E) - aY I,

Z;boot B )+0,2

This unbiasedneas result cannot be extended to the heteroscedastic case because of

(9.20). The condition (9.23) is a reasonable one since n,- 0 p(n -15) follows from

S-B-0,(.- 0 5 ), which is a consequence of (C3) and the conditional central limit

theorem of 8 (Freedman, 1981, Theorem 2.2).

10. Simulation results

In this section we examine the M4onte-Carlo behavior of Mi the bias of several

estimators of the variance-covariance matrix of the least squares estimator, Var (B),

(ii) the bias of several estimators of a nonlinear parameter 8 - g(O), and (iii) the

coverage probability and length of the associated interval estimators of the same nonlinear

parameter.

Under consideration is the following quadratIc regression model:

-0~ + 0 x + + + 2 i 1 - 1(1)12

X, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10

-39-

. -,iA;



Two variance patterns are considered:

Unequal variances: i - /5 N(O,1)

8qual variances : ei - N(0,1)

The ei'a are independent. For unequal variances the variance-covariance matrix of the

ordinar least squares estimator B is

. o -0.79 0.08
Var(l) [ 0.48 -0.05

0.01]

while the expectation (see (6.12)) of the usual variance estimator var, is

I.09 -0.87 0.0712 (Xx)- - 0.42 -0.o4

L0. 0 i
Because of the heterogeneity of errors, the two matrices are quite different. For a

variance estimator v, its bias is defined as

B(v) = 2(v) - Var(S)

Four variance estimators are considered: (1) the usual variance estimator var (5.9),

which is identical to the bootstrap variance estimator vb (9.18), (2) the delete-one

jackknife variance estimator vJ(1 ) (5.16), (3) Hinkley's delete-one jackknife variance

estimator v9(1 ) (6.10), (4) the retain-eight jackknife variance estimator vj,8  (5.7).

The following results are based on 3000 simulations on a VAX 11/780 at the University of

Wisconsin-Nadison. The normal random numbers are generated according to the IKSL sub-

routine GaML. The same set of normal random numbers is used throughout the study.

158 -0.07 -0.0

D(var) - -0.05 0.0

r02 0.03 -0.00
B( jM -0.04 0.01

-0.0Q

.3 .19 -0.0

(v - -0.14 0.02
-0.0J
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0.09 0.01 -0.011
Dcv i t -0.04 0.01

, 1.-0.00

In the unequal variance case, vat is known to be biased (6.12) - (6.13), v,( 1 ) to be

almost unbiased (Theorem 5). Both are confirmed by the simulations. The robustness of

voe8 conjectured in Section 6 is also confirmed. The only surprise is the poor perfor-

mance of v 9 ( 1 ). The claimed robustness (as n becomes large) of v,( 1 ) in Theorem 6

does not hold up here. Its bias is quite nontrivial. This prompted us to examine the bias

behavior of vr(l) in the equal variance came since v,(1 ) is the only one that is not

-2 T -1 2 T -1exactly unbiased (Theorem 6(i)). In this case, Var($) - a (X X) - o2(X X) . The

bias of v (1) is not negligible,

-0.13 0.07 -0.01]
v( )M - -0.04 0.001

9(1) -0.00

and the biases of var, vJ(1) and vJ,, are all very small (none of the entries exceeds

0.0102 in magnitude). Another thing to note is that all the diagonal elements of VH(I)

are downward-biased in the simulation. The poor performance of v t( 1  in both cases

should cause its users sme concern at least in the small sample situations.

We next consider bias reduction and interval estimation for the nonlinear parameter

81

2

which maximizes the quadratic function B0 + B x + S2x over x. Six point estimators are

considered: 01 e (1 - - B n() (9.13); - - ac1)' (9.10); 6i' -

8- s3t (9.18)1 6 i's 0 - st,* (9.6)1 boot -8- t (9.21). In drawing the

bootstrap samples, the uniform random integers are generated according to the I4SL

subroutine GGD. The number of bootstrap samples B is 480, which is comparable to

495, the total number of jackknife subsets of size 8.

Their average biases are given in Table 1 for So - 0, 81 . 4 and several values of

2 . Bias reduction is more difficult to achieve when 02 gets closer to 0 since 6

becomes a more curved function of 02, and when the variances are unequal. In the most
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nonlinear situation B2 - -0.25 and unequal variances, only 0 1 and Shoat achieve

mild reduction of bias and other estimators in fact have bigger biases. In all the other

situations, the two jackknife estimators 0 and 6 achieve substantial reduction

of bias. On the other hand, the other two jackknife estimators 6.70) and 6 i' based on

internal adjustment of distance do not perform as well. This is consistent with the

asymptotic comparison given before Leas 5. What puzzles us is the unpredictable behavior

of the bootstrap estimator eboat for B2 - -0.25. According to Theorem 8, eboot

reduces bias for equal variances but not for unequal variances. What we see in Table 1 is

the contrary. It appears that the curvature effect is the dominant factor here.

Table 1. Biases of six estimators of ;

(based on 3000 simulation samples)

o- 0, B1 - 4

Unequal variances Equal variances

estimator B2  B2

-0.25 -0.35 -0.5 -1.0 -0.25 -1.0

a 0.41 0.05 -0.02 -0.01 0.08 -0.01

) -0.22 -0.01 0.00 -0.00 -0.05 -0.00

( 0.63 0.06 0.02 0.00 0.02 -0.00

o i' 1.48 0.00 0.00 -0.00 0.01 -0.00

, 2.39 0.05 -0.01 -0.00 -0.08 -0.00

0 oot 0.16 0.02 0.01 -0.00 -0.12 -0.00

We now consider interval estimation for S. ror equal variances, the classical

Fieller's interval is exact. In the context of maximizing the quadratic function, the

exact (1-2) Fieller's interval is (Williams, 1959, p. 111)

2
(101)(U) ( )~ if (1-2)2 < (1" 11 )(1-g 2 2 )

:i(10.1) (lZ) (-toe L ) U (O u, if (1"912) 2 )(l"J11"",2J2)' q22 I

(111) I,,U ]  otherwise

-42-

- . ,.- -



where) L, aU are the smaller and larger values respectively of

{1_g~12 (1-112 (1111 ( -221 /1 221

+ - ? -1 /(10.2) t 2 ;2 c ij

(xi)' " c 0(i,jC2

and t in the upper a percentage point of a t-distribution with n - 3 (here 9)
a

degrees of freedom, 2 is the usual variance estimator (5.9) (by assuming equal

variances). Fieller's interval estimate is unbounded in the case of (1) or (II) of

(10.1). The method in not exact if the variances are unequal.

Altogether nine methods are compared in our simulation. A description in given below.

symbol interval estimate

Fieller Fieller's interval, (10.1)

VC1 Delete-i jackknife ttv (6), (7.2)

1) Delete-I jackknife ,n- 7.1)

VCJS Retain-8 jackknife a tOFvJ (0), (7.2)

VWJs Retain-S jackknife 8 ± ta v J (), (7.1)

VBOOT Bootstrap variance t (8.18)

VLIN Linear approximation t taV vno (7.4)

PBOOT Bootstrap percentile (--Fa)(a), CDFD (1-u)), (8.20)

P38 Jackknife percentile [CDFj (a), CDJ (1-u)], (7.5)
(retain-S)

(V : variance, C : curl, R hat, P : percentile)

The average coverage probabilities (based on 3000 samples) for these nine methods are

given in Table 2 for five sets of parameters. Since Fieller's interval in the case of (1)

and (11) of (10.1) has infinite length, we break the 3000 simulation samples into

categories (1), (I) and (III) according to which category the corresponding Fieller's
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intervals belong to. Zn our simulation samples (1) never happens, (II) happens only when

A2 - -0.25 and -0.35. In these two cases, the median length of each interval estimate is

computed separately for category (11) and category (111) and is given in Table 3. For the

rest, the median length over 3000 samples is given inside the parenthesis in Table 2. We

do not report the average lengths since they are too such influenced by a few extreme

values. Take 82 = -0.25 and unequal variances as an example. The average lengths for

VCJ8, VW1 and VDOOT in category III are 176.85, 365.76 and 39.54 respectively while

the medians are 10.65, 6.64 and 3.73. The three methods perform unstably in highly

nonlinear situations.

Table 2. Average coverage probabilities and median lengths for nine
interval estimation methods (3000 simulation samples)
Nominal level - 0.95, 80 - 0, 8 1 a 4

Unequal variances Nqual variances

method 8 2 2

-0.25 -0.35 -0.5 -1.0 -0.25 -1.0

Fieller .858 .866 .968 .952 .947 .950
(.98) (.92) (2.48) (.64)

VCJ(1) .887 .848 .961 .950 .904 .935
(.91) (.89) (2.03) (.62)

VU,7(1) .866 .845 .950 .947 .899 .935
(.87) (.87) (1.94) (.62)

VCJS .946 .920 .968 .953 .947 .939
(.97) (.90) (3.19) (.63)

VW8 .931 .908 .965 .953 .941 .939
(.93) (.90) (2.69) (.63)

.866 .902 .973 .955 .956 .946
(.97) (.91) (2.42) (.64)

VLI .865 .891 .969 .952 .949 .948
(.93) (.90) (2.18) (.64)

PDOOT .829 .814 .940 .921 .912 .916
(.84) (.79) (2.05) (.56)

Pis .809 .755 .909 .912 .831 .900
(.78) (.78) (1.90) (.55)

(length of interval estimate inside the parenthesis)
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Table 3. Median lengths of nine interval estimates
of category (II) and category (III)

0 - 0, $1 - 4, unequal variance&

method 82 - -0.25 82 -- 0.35

11(199) 111(2801) 11(7) I1T(2993)

Fieller W 3.81 - 1.10

VCJ(1) 29.08 3.87 8.92 1.04

VN(1) 15.17 3.13 5.63 0.98

VCJS 223.67 10.65 38.08 1.59

VHJ8 166.81 6.64 49.80 1.37

VBOOT 313.17 3.73 86.63 1.07

VLIW 14.75 2.91 5.82 1.02

PBOOT 55.05 3.07 17.78 0.93

PJi 28.54 3.34 8.22 0.92

The figure inside the parenthesis is the number of

simulation samples belonging to the category

The results can be su marized as follows:

1. Zffect of parameter nonlinearity . When the parameter 8 becomes more nonlinear (2

closer to 0), all the intervals become wider and the associated converage

probabilities smaller. The phenomenon is especially pronounced for unequal variances

and 82 a -0.25, -0.35, where we observe the Fieller paradox (i.e., Fieller's intervals

take the form (10.1) (11).) in these two cases, only the two retain-S jackknife methods

provide intervals with good coverage probabilities. But the price is dear. Both the

mean and median lengths of their intervals are quite big even in category (III) where

Fieller's interval is reasonably tight but, of course, with poor coverage probability.

In the other cases, the first seven methods all do reasonably well.

2. Iffect of error variance heterogeneity. As the theory indicates, the general perfor-

mance is less desirable in the unequal variance case. Fieller's interval is far from

being exact for 02 - -0.25, -0.35 and unequal variances. For equal variances

rieller's method is almost exact and the next six methods (t-intervals with various
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variance estimates) perform reasonably vel even in the most nonlinear came B2 - -0.25.

The two retain-8 jackknife methods are least affected by the heterogeneity of variances.

3. Cmdercoverase of the percentile methods. This is very disappointinq in view of the

second order asymptotic results on the bootstrap (Singh, 19811 Beran, 1982) which are

used as evidence of the superiority of the bootstrap approximation over the classical

t approximation. The undercoverage of the bootstrap percentile and the jackknife per-

centile methods, with the latter being the more serious one, is partly due to the fact

that their associated intervals are shorter. But noting from Tables 2 and 3, the

linearization variance method (VLIN) has comparable interval length and yet higher

coverage probabilities. we think the problem is a more intrinsic one. We speculate

that this shortcoming has something to do with the skewness and light-tailedness of the

bootstrap and jackknife histograms.

4. Fieller's method is exact in the equal variance case even when the parameter is con-

siderably nonlinear, but is quite vulnerable to error variance heterogeneity.

5. The linearization method is a winner. This is most surprising since we cannot find a

theoretical justification. The intervals are consistently among the shortest, and the

coverage probabilities are quite comparable to the others (except for 62 - -0.25, -0.35

and unequal variances where VCJS and VHJS are the best). The linearization method is

compared favorably with Fieller's method. The former has consistently shorter intervals

than the latter and the coverage probabilities are very close. In fact for

A2 - -0.25, -0.35 and unequal variances, VLIN has much shorter intervals and much higher

coverage probabilities. Note that Fieller's intervals are unbounded in 199 (a -

-0.25) and 7 (8 2 - -0.35) out of 3000 samples (Table 3).

6. Internal (curl) or external (hat) adjustment in jackknife variance estimation? In

general the curl jackknife gives wider intervals than the hat jackknife. On the other

hand the coverage probabilities of the two methods are very comparable. Further

research is needed to sort out the relative merits of the two adjustment methods in more

general situations.
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11. Concluding remarks and further questions

The main ideas and results of this paper can be summarized as follows:

1. The general representation of the full-data least squares estimate as a weighted average

of the resample-data least squares estimates for general resampling plans. We expect to

see further applications of this representation.

2. The proper weight for each subset least squares estimate is proportional to the

determinant of the xTX matrix of the subset. Since the latter matrix is proportional

to the Fisher. information matrix of the subset, it immediately suggests an extension of

our general jackknife procedure to nonlinear regression models and generalized linear

models (NcCullagh and Nelder, 1983). For each subset, the corresponding nonlinear least

squares estimate or maximum likelihood estimate is computed and the Fisher information

matrix of the subset is evaluated at the estimated parameter value. The formulae

developed in the paper can be applied in a straightforward manner.

3. The delete-one jackknife variance estimator is robust against error heterogeneity. None

of the bootstrap methods under consideration is robust. Dootstrapping the residuals is

too model-dependent to be a robust tool.

4. The scope of the jackknife method is broadened with the introduction of the (weighted)

Jackknife histogram and the interval estimation method based on its percentiles. It is

made possible by the more flexible choice of subset size and the weighting factor dis-

cussed in 2. Although the two percentile methods do not perform well in the simulation,

an effective modification of the jackknife percentile method will probably have to

incorporate the above two elements.

S. The problem of bias reduction is intimately related to unbiased estimation of

variance. This is especially interesting when the latter is not easy to achieve, e.g.

in the heteroecedastic situation.

Several questions have been raised in the course of our study. We hope they will

generate further interests and research in this area.
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1. We conjecture that Theorem 5 is still true for v3,r with small d - n-r, that is,

the delete-d jackknife variance estimator is robust against error heterogeneity.

Does vj,r enjoy other desirable properties? For example, is vjn.2 (delete-two

jackknife) robust against certain forms of error correlation?

II. Does there exist a bootstrap variance estimator that is robust against error hetero-

geneity? For the bootstrap method to be model-free or model-robust as is sometimes

claimed (Efron and Gong, 1983), this is a very basic requirement.

III. The methods based on the bootstrap-histogram and the jackknife-histogram perform

disappointingly in the simulation. Refinements of these methods are called for. One

obvious defect of the reseample histograms is that they have shorter tails than their

population counterparts. The handling of skewness may also be improper. The poor

performance of the percentile methods raises our doubt about the relevance of the

present asymptotic results on the bootstrap. Mathematical results that can explain

the empirical behavior are urgently needed.

IV. Is it possible to find a theoretical guide on the choice of subset size for the Jack-

knife method? One interesting possibility may start with the concept of "distance

matching" given in Section 7.

V. The scale factor (r-k+l)/(n-r) in the retain-r jackknife method is used for

"distance matching". It can be applied either before or after the nonlinear trans-

formation (see (7.1) and (7.2)). It would be interesting to sort out the relative

merits of these two scaling methods.
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